package DataStructures; import Supporting.*; import Exceptions.*; import Supporting.Comparable; // SplayTree class // // CONSTRUCTION: with no initializer // // ******************PUBLIC OPERATIONS********************* // void insert( x ) --> Insert x // void remove( x ) --> Remove x // void removeMin( ) --> Remove smallest item // Comparable find( x ) --> Return item that matches x // Comparable findMin( ) --> Return smallest item // Comparable findMax( ) --> Return largest item // Comparable getRoot( ) --> Return item at root // boolean isEmpty( ) --> Return true if empty; else false // void makeEmpty( ) --> Remove all items // void printTree( ) --> Print tree in sorted order // ******************ERRORS******************************** // Most routines throw ItemNotFound on various degenerate conditions // insert throws DuplicateItem if item is already in the tree /** * Implements a top-down splay tree. * Note that all "matching" is based on the compares method. * @author Mark Allen Weiss */ public class SplayTree implements SearchTree { /** * Construct the tree. */ public SplayTree( ) { root = nullNode; } /** * Insert into the tree. * @param x the item to insert. * @exception DuplicateItem if an item * that matches x is already in the tree. */ public void insert( Comparable x ) throws DuplicateItem { if( newNode == null ) newNode = new BinaryNode( null ); newNode.element = x; if( root == nullNode ) { newNode.left = newNode.right = nullNode; root = newNode; } else { root = splay( x, root ); if( x.lessThan( root.element ) ) { newNode.left = root.left; newNode.right = root; root.left = nullNode; root = newNode; } else if( root.element.lessThan( x ) ) { newNode.right = root.right; newNode.left = root; root.right = nullNode; root = newNode; } else throw new DuplicateItem( "SplayTree insert" ); } newNode = null; // So next insert will call new } /** * Remove from the tree. * @param x the item to remove. * @exception ItemNotFound if no item * that matches x can be found in the tree. */ public void remove( Comparable x ) throws ItemNotFound { BinaryNode newTree; // If x is found, it will be at the root root = splay( x, root ); if( root.element.compares( x ) != 0 ) throw new ItemNotFound( "SplayTree remove" ); if( root.left == nullNode ) newTree = root.right; else { // Find the maximum in the left subtree // Splay it to the root; and then attach right child newTree = root.left; newTree = splay( x, newTree ); newTree.right = root.right; } root = newTree; } /** * Return item stored in the root. * @exception ItemNotFound if the tree is empty. */ public Comparable getRoot( ) throws ItemNotFound { if( isEmpty( ) ) throw new ItemNotFound( "SplayTree getRoot" ); return root.element; } /** * Remove the smallest item from the tree. * @exception ItemNotFound if the tree is empty. */ public void removeMin( ) throws ItemNotFound { Comparable min = findMin( ); remove( min ); } /** * Find the smallest item in the tree. * Not the most efficient implementation (uses two passes), but has correct * amortized behavior. * A good alternative is to first call Find with parameter * smaller than any item in the tree, then call findMin. * @return the smallest item. * @exception ItemNotFound if the tree is empty. */ public Comparable findMin( ) throws ItemNotFound { if( isEmpty( ) ) throw new ItemNotFound( "SplayTree findMin" ); BinaryNode ptr = root; while( ptr.left != nullNode ) ptr = ptr.left; root = splay( ptr.element, root ); return ptr.element; } /** * Find the largest item in the tree. * Not the most efficient implementation (uses two passes), but has correct * amortized behavior. * A good alternative is to first call Find with parameter * larger than any item in the tree, then call findMax. * @return the largest item. * @exception ItemNotFound if the tree is empty. */ public Comparable findMax( ) throws ItemNotFound { if( isEmpty( ) ) throw new ItemNotFound( "SplayTree findMax" ); BinaryNode ptr = root; while( ptr.right != nullNode ) ptr = ptr.right; root = splay( ptr.element, root ); return ptr.element; } /** * Find an item in the tree. * @param x the item to search for. * @return the matching item. * @exception ItemNotFound if no item * that matches x can be found in the tree. */ public Comparable find( Comparable x ) throws ItemNotFound { root = splay( x, root ); if( root.element.compares( x ) != 0 ) throw new ItemNotFound( "SplayTree find" ); return root.element; } /** * Make the tree logically empty. */ public void makeEmpty( ) { root = nullNode; } /** * Test if the tree is logically empty. * @return true if empty, false otherwise. */ public boolean isEmpty( ) { return root == nullNode; } /** * Print the tree contents in sorted order. */ public void printTree( ) { if( root == nullNode ) System.out.println( "Empty tree" ); else printTree( root ); } /** * Internal method to perform a top-down splay. * The last accessed node becomes the new root. * This method may be overridden to use a different * splaying algorithm, however, the splay tree code * depends on the accessed item going to the root. * @param x the target item to splay around. * @param t the root of the subtree to splay. * @return the subtree after the splay. */ protected BinaryNode splay( Comparable x, BinaryNode t ) { BinaryNode leftTreeMax, rightTreeMin; header.left = header.right = nullNode; leftTreeMax = rightTreeMin = header; nullNode.element = x; // Guarantee a match for( ; ; ) if( x.lessThan( t.element ) ) { if( x.lessThan( t.left.element ) ) t = Rotations.withLeftChild( t ); if( t.left == nullNode ) break; // Link Right rightTreeMin.left = t; rightTreeMin = t; t = t.left; } else if( t.element.lessThan( x ) ) { if( t.right.element.lessThan( x ) ) t = Rotations.withRightChild( t ); if( t.right == nullNode ) break; // Link Left leftTreeMax.right = t; leftTreeMax = t; t = t.right; } else break; leftTreeMax.right = t.left; rightTreeMin.left = t.right; t.left = header.right; t.right = header.left; return t; } /** * Internal method to print a subtree in sorted order. * @param t the node that roots the tree. */ private void printTree( BinaryNode t ) { if( t != t.left ) { printTree( t.left ); System.out.println( t.element.toString( ) ); printTree( t.right ); } } private BinaryNode root; private static BinaryNode nullNode; static // Static initializer for nullNode { nullNode = new BinaryNode( null ); nullNode.left = nullNode.right = nullNode; } private static BinaryNode newNode = null; // Used between different inserts private static BinaryNode header = new BinaryNode( null ); // For Splay // Test program; should print min and max and nothing else public static void main( String [ ] args ) { SearchTree t = new SplayTree( ); final int NUMS = 40000; final int GAP = 307; System.out.println( "Checking... (no more output means success)" ); try { for( int i = GAP; i != 0; i = ( i + GAP ) % NUMS ) t.insert( new MyInteger( i ) ); for( int i = 1; i < NUMS; i+= 2 ) t.remove( new MyInteger( i ) ); if( NUMS < 40 ) t.printTree( ); if( ((MyInteger)(t.findMin( ))).intValue( ) != 2 || ((MyInteger)(t.findMax( ))).intValue( ) != NUMS - 2 ) System.out.println( "FindMin or FindMax error!" ); for( int i = 2; i < NUMS; i+=2 ) t.find( new MyInteger( i ) ); for( int i = 1; i < NUMS; i+=2 ) { try { System.out.println( "OOPS!!! " + t.find( new MyInteger( i ) ) ); } catch( ItemNotFound e ) { } } } catch( DuplicateItem e ) { System.out.println( e ); } catch( ItemNotFound e ) { System.out.println( e ); } } }